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ABSTRACT 

In this paper we describe algorithms for computer simulations of some common 

continuous distributions and their implementation in MATLAB. We use Monte Carlo 

methods for estimating probabilities and other characteristics of random variables. The 

paper concludes with some interesting applications. 
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1. INTRODUCTION 

Monte Carlo methods are used to describe any technique that approximates solutions to 

quantitative problems through statistical sampling. This process involves performing 

many simulations using random numbers and probability to get an approximation of the 

answer to a problem which is otherwise too complicated, expensive, time consuming, 

dangerous, or simply impossible to solve analytically. Such methods use approximations 

which are based on “long run” simulations. With the help of random number generators, 

computers can actually simulate a “long run”. The longer the run is simulated, the more 

accurate the predictions are. Monte Carlo methods can be used for (but are not restricted 

to) computation of probabilities, expected values and other distribution characteristics. 

Although we briefly discuss simulations of some discrete distributions, the main focus of 

this paper is to present methods of simulation for continuous random variables and their 

applications. 

1.1. Preliminaries 

Definition 1.1. The set of all possible outcomes of an experiment is called the sample 

space of that experiment and is denoted by S. Its elements are called elementary events. 

An event is a collection of elementary events, i.e. a subset of S. 

Definition 1.2. A collection of events 𝐾 ⊆ 𝑆 is called a 𝜎-field (or 𝜎-algebra) on the 

sample space 𝑆, if it satisfies the conditions 
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(𝑖)  𝐾 ≠ ∅; 

(𝑖𝑖)  𝐴 ∈ 𝐾 ⟹ �̅� ∈ 𝐾; 

(𝑖𝑖𝑖)  𝐴1, 𝐴2, … , 𝐴𝑛 ∈ 𝐾 ⟹  ⋃ 𝐴𝑖 ∈ 𝐾.
𝑛

𝑖=1
 

Definition 1.3. Let S be a sample space and 𝐾 ⊆ 𝑆 a 𝜎-field on it. Probability is a 

function 𝑃: 𝐾 → 𝑅 satisfying the conditions 

(𝑖)  𝑃(𝑆) = 1; 

(𝑖𝑖)  𝑃(𝐴) ≥ 0, ∀𝐴 ∈ 𝐾; 

(𝑖𝑖𝑖)  𝑃(𝐴1⋃𝐴2⋃ … ) = 𝑃(𝐴1) + 𝑃(𝐴2) + ⋯ for any finite or countably infinite 

collection of mutually exclusive (disjoint) events in 𝐾. 

Then (𝑆, 𝐾, 𝑃) is called a probability space. 

Definition 1.4. A random variable is a function 𝑋: 𝑆 → ℝ for which the inverse image 

𝑋−1((−∞, 𝑥]) = {𝑒 ∈ 𝑆|𝑋(𝑒) ≤ 𝑥} ∈ 𝐾, for all 𝑥 ∈ ℝ. 

If 𝑋(𝑆) is a most countable in ℝ, then 𝑋 is a discrete random variable. 

Definition 1.5. Let 𝑋 be a (discrete or continuous) random variable. The function 𝐹: ℝ →
ℝ given by 

𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥)                                                 (1.1) 

is called the cumulative distribution function (cdf) of 𝑋. 

Definition 1.6. Let 𝑋 be a random variable with  𝐹 . If there exists a function 𝑓: ℝ → ℝ 

such that 

𝐹(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡,
𝑥

−∞
                                               (1.2) 

then 𝑋 is a continuous random variable and 𝑓 is called its probability density function 

(pdf). 

If 𝑋 is a discrete random variable, then a better way of describing it is to give its 

probability distribution function (also pdf), an array that contains all its values 𝑥𝑖, and 

the corresponding probabilities with which each value is taken 𝑝𝑖 = 𝑃(𝑋 = 𝑥𝑖), 

𝑋 (
𝑥𝑖

𝑝𝑖
)

𝑖∈𝐼
 .                                                      (1.3) 

So, either way (the discrete or the continuous case), the pdf is what describes a random 

variable. Although in both cases we call it generically a pdf, the word distribution 

emphasizes a discrete behavior, whereas density suggests a continuous set. However, not 

all authors make the distinction between the two cases. In the case where 𝑋 is a discrete 

random variable, it can be easily seen that 

                                                          𝐹(𝑥) =  ∑ 𝑝𝑖𝑥𝑖≤𝑥 ,                                           (1.4) 

hence the name. 
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1.2. Some Common Distributions  

Although many more probability distributions have a wide variety of applications and the 

simulation methods we will discuss apply to all of them, we do not intend to make an 

exhaustive list of common distributions and, thus, only mention the ones that will be used 

in applications in the sequence. 

Bernoulli distribution 𝐵𝑒𝑟𝑛(𝑝), with parameter 𝑝 ∈ (0,1). This is the simplest of 

distributions, with pdf 

𝑋 (
0 1

1 − 𝑝 𝑝
)  .                                                (1.5) 

It is used to model “success/failure” (i.e. a Bernoulli trial), since many distributions are 

described in such terms. 

Binomial distribution 𝐵(𝑛, 𝑝), with parameters 𝑛 ∈ ℕ, 𝑝 ∈ (0, 1). Consider a series of 𝑛 

Bernoulli trials with probability of success 𝑝 in every trial (𝑞 = 1 − 𝑝). Let 𝑋 be the 

number of successes that occur in the 𝑛 trials. Then 𝑋 has a Binomial distribution, with 

pdf 

        𝑋 (
𝑘

𝐶𝑛
𝑘𝑝𝑘𝑞𝑛−𝑘)

𝑘=0,𝑛̅̅̅̅̅
 .                                                      (1.6) 

Note that a Binomial 𝐵(𝑛, 𝑝) variable is the sum of n independent 𝐵𝑒𝑟𝑛(𝑝) variables and 

𝐵𝑒𝑟𝑛(𝑝) = 𝐵(1, 𝑝). 

Poisson distribution  𝑃(𝜆 ), with parameter  𝜆 > 0, with pdf 

𝑋 (
𝑘

𝜆𝑘

𝑘!
𝑒−𝜆)

𝑘∈ℕ

 .                                                      (1.7) 

Such a variable is defined in the context of a Poisson process: a process in which discrete 

events are observed in a continuous medium (length, aria, volume, time, etc.). Such events 

are called rare events, because they are extremely unlikely to occur simultaneously or 

within a short interval (of time, length, etc.). The Poisson variable 𝑋 denotes the number 

of such rare events that occur in a given interval of the continuous medium. The 

parameter of the Poisson distribution, 𝜆, represents the average number of the considered 

rare events per unit (of time, length, etc.). This distribution is used to model number of 

jobs in an interval of time, such as arrival of messages, earthquakes that happen in an 

area, errors found in software, traffic accidents, etc. 

Next, let us recall some important continuous random variables. For their pdf’s, we only 

mention their expression on the region where they are non-zero (meaning they are equal 

to 0 everywhere else).   

Uniform distribution  𝒰(𝑎, 𝑏), with parameters 𝑎 < 𝑏 ∈ ℝ, has pdf 

 𝑓(𝑥) =
1

𝑏−𝑎
, 𝑥 ∈ (𝑎, 𝑏) .                                                (1.8) 
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It is used whenever a value is picked “at random” from an interval, in situations when all 

values from an interval are equally probable to be taken by a random variable. 

Standard Uniform distribution  𝒰(0,1), with pdf 

𝑓(𝑥) = 1, 𝑥 ∈ (0,1)  𝑎𝑛𝑑  𝐹(𝑥) = {
0, 𝑥 < 0
𝑥, 𝑥 ∈ [0,1)   .
1, 𝑥 > 1

                    (1.9) 

Standard Uniform variables are particularly important in generating random variables 

with various distributions. If 𝑈 ∈ 𝒰(0,1), then 𝑋 = 𝑎 + (𝑏 − 𝑎)𝑈 ∈ 𝒰 (𝑎, 𝑏). 

Normal distribution 𝑁(𝜇, 𝜎), with parameters 𝜇 ∈ ℝ, 𝜎 > 0, with pdf and cdf 

𝑓(𝑥) =
1

𝜎√2𝜋
𝑒

−
(𝑥−𝜇)2

2𝜎2 , 𝑥 ∈ ℝ,   𝐹(𝑥) =
1

𝜎√2𝜋
∫ 𝑒

−
(𝑡−𝜇)2

2𝜎2 𝑑𝑡 = Φ (
𝑥−𝜇

𝜎
)

𝑥

−∞
.        (1.10) 

Standard (Reduced) Normal distribution 𝑁(0,1), with pdf 

𝑓(𝑥) =
1

√2𝜋
𝑒−

𝑥2

2 , 𝑥 ∈ ℝ  and  𝑐𝑑𝑓 𝐹(𝑥) =
1

√2𝜋
∫ 𝑒−

𝑡2

2 𝑑𝑡 = Φ(𝑥)
𝑥

−∞
,       (1.11) 

known as Laplace’s function (or the error function), whose values can be found in tables. 

Exponential distribution 𝐸𝑥𝑝(𝜆 ), with parameter  𝜆 > 0, has pdf 

 𝑓(𝑥) = 𝜆𝑒−𝜆𝑥, 𝑥 > 0   and  𝑐𝑑𝑓 𝐹(𝑥) = 1 − 𝑒−𝜆𝑥, 𝑥 > 0.                (1.12) 

An Exponential variable models time: waiting time, interarrival time, failure time, time 

between rare events, etc. The parameter 𝜆 represents the frequency of rare events, 

measured in time-1. In fact, in a sequence of rare events, where the number of such 

occurrences in an interval of time of length 𝑡 has 𝑃(𝜆𝑡) distribution, the time between rare 

events has 𝐸𝑥𝑝(𝜆) distribution. 

Expectation and variance 

These are two of the most important numerical characteristics associated with random 

variables. The expectation (expected value, mean value) gives a “long term” average 

value, an equilibrium value of a random variable. Below are the computational formulas 

for a discrete random variable with pdf 𝑋 (
𝑥𝑖

𝑝𝑖
)

𝑖∈𝐼
 and for a continuous random variable 

with pdf 𝑓: 𝑅 → 𝑅, respectively: 

𝐸(𝑋) = ∑ 𝑥𝑖𝑝𝑖,    𝐸(𝑋) = ∫ 𝑥𝑓(𝑥)𝑑𝑥
 

ℝ𝑖∈𝐼  ′                      (1.13) 

The variance (dispersion) measures the spread in data, how much the values of a random 

variable vary from its mean value and so does its square root, the standard deviation.  

𝑉(𝑋) = 𝐸 ((𝑋 − 𝐸(𝑋))
2

) = 𝐸(𝑋2) − (𝐸(𝑋))
2

, 𝜎(𝑋) = √𝑉(𝑋) .       (1.14) 

Normal approximation of a Binomial distribution      

For values of 𝑝 that are not too extreme, say 𝑝 ∈ [0.05, 0.95] and for large values of 𝑛 ∈
𝑁, the Normal distribution can be used to approximate the Binomial distribution: 
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𝐵(𝑛, 𝑝) ≈ 𝑁 (𝜇 = 𝑛𝑝, 𝜎 = √𝑛𝑝(1 − 𝑝) ) .                         (1.15) 

This formula is especially useful in Statistics, when quantiles (inverses of the cdf) are 

needed. 

Next, we recall one important case of two-dimensional random vectors, which will be 

used further on. 

Uniformly distributed random vector (X,Y) over a region 𝐷 ⊆ ℝ2, is vector whose 

joint density is a constant over that region (and 0 everywhere else). Since the total 

(double) integral of that density ∫ ∫ 𝑓(𝑥;  𝑦) 𝑑𝑥𝑑𝑦
∞

−∞

∞

−∞
 must be 1 (representing the 

probability of the sure event), the joint pdf of the vector is given by 

𝑓(𝑥, 𝑦) =
1

area(𝐷)
, (𝑥, 𝑦) ∈ 𝐷 .                                      (1.16) 

From the joint pdf of a vector, 𝑓(𝑋;𝑌), one can find the marginal densities (the pdf’s of its 

components) by 

𝑓𝑋(𝑥) = ∫ 𝑓(𝑋,𝑌)(𝑥, 𝑦)𝑑𝑦,    
ℝ

𝑓𝑌(𝑦) = ∫ 𝑓(𝑋,𝑌)(𝑥, 𝑦)𝑑𝑥.    
ℝ

           (1.17) 

2. SIMULATIONS OF RANDOM VARIABLES AND MONTE CARLO METHODS 

2.1.  Inverse Transform Method 

This is a method used when we want to generate a random variable whose cdf 𝐹 does not 

have a very complicated form. It is based on the following result: 

Theorem 2.1. Let X be a continuous random variable with 𝑐𝑑𝑓 𝐹 ∶ ℝ → ℝ. Then 𝑈 =
 𝐹(𝑋) ∈ 𝒰(0,1). 

Proof. We will show that 𝑈 has the  𝒰(0,1) pdf. 

First off, let us notice that, being a cdf, 𝐹(𝑥) ∈  [0,1], for all 𝑥 ∈ ℝ and, thus, all the 

values of 𝑈 are in [0,1]. 

Secondly, 𝑋 being a continuous random variable, there exists an interval (𝑎, 𝑏) ⊆ ℝ such 

that 𝐹: (𝑎, 𝑏) → [0,1] is strictly increasing (therefore one-to-one), 𝐹(𝑥) = 0, ∀𝑥 ≤ 𝑎 and 

𝐹(𝑥) = 1, ∀𝑥 ≥ 𝑏. 

Hence, its inverse 𝐹−1: [0,1] → (𝑎, 𝑏) exists. 

Now, let us consider the 𝑐𝑑𝑓, 𝐹𝑈. Let 𝑥 ∈ ℝ. 

If 𝑥 < 0, then 𝐹𝑈(𝑥) = 𝑃(𝑈 ≤ 𝑥) = 𝑃(imposs. event) = 0. Hence, 𝑓𝑈(𝑥) = 𝐹𝑈
′ (𝑥) = 0. 

If 𝑥 > 1, then 𝐹𝑈(𝑥) = 𝑃(𝑈 ≤ 𝑥) = 𝑃(sure event) = 1 and thus, 𝑓𝑈(𝑥) = 𝐹𝑈
′ (𝑥) = 0. 

For 𝑥 ∈ [0,1], we have 

𝐹𝑈(𝑥) = 𝑃(𝑈 ≤ 𝑥) = 𝑃(𝐹(𝑋) ≤ 𝑥) = 𝑃(𝑋 ≤ 𝐹−1(𝑥)) = 𝐹(𝐹−1(𝑥)) = 𝑥. 

Then 𝑓𝑈(𝑥) = 𝐹𝑈
′ (𝑥) = 1 and 𝑈 ∈  𝒰(0,1).□ 
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As a consequence, to generate a continuous random variable with given 𝑐𝑑𝑓 𝐹, we 

generate a variable 𝑈 ∈  𝒰(0,1) and let 

𝑋 = 𝐹−1(𝑈).                                                        (2.1) 

Indeed, then the cdf of 𝑋 is 

𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥) = 𝑃(𝐹−1(𝑈) ≤ 𝑥) = 𝑃(𝑈 ≤ 𝐹(𝑥)) = 𝐹𝑈(𝐹(𝑥)) = 𝐹(𝑥). 

For all 𝑥 ∈ ℝ, the last assertion following from (1.9) and the fact that 𝐹(𝑥) ∈ [0,1]. Thus 

𝑋 has the desired cdf 𝐹. 

Remark 2.2. The inverse transform method can be adjusted for discrete random 

variables as well, if we consider the generalized inverse of the cdf, i.e. let 

𝑋 = min{𝑥 | 𝐹(𝑥) ≥ 𝑈}.                                               (2.2) 

Algorithm 1. 

1. Generate ∈  𝒰(0,1) . 

2. if 𝑋 is continuous, then let 𝑋 = 𝐹−1(𝑈). 

3. if 𝑋 is discrete, then let 𝑋 = min{𝑥 ∈ 𝑆 | 𝐹(𝑥) ≥ 𝑈}, where 𝑆 is a set of possible             

values of 𝑋. 

Example 2.3. Use the inverse transform method to generate a variable X ∈ 𝐸𝑥𝑝(𝜆), 𝜆 > 0. 

By (1.12), we find the inverse 𝐹−1(𝑥) = −
1

𝜆
ln (1 − 𝑥). Then, for 𝑈 ∈  𝒰(0,1) we 

generate 

𝑋1 = −
1

𝜆
ln (1 − 𝑈) .                                                   (2.3) 

Now, since 𝑈 ∈  𝒰(0,1) ⇔ 1 − 𝑈 ∈  𝒰(0,1) we can also use 

𝑋2 = −
1

𝜆
ln (𝑈) .                                                         (2.4) 

Notice that since 𝑈, 1 − 𝑈 ∈  𝒰(0,1), we have that both ln(𝑈) , ln(1 − 𝑈) < 0 and, thus, 

𝑋1, 𝑋2 > 0, as they should be.□  

2.2. Rejection Method 

The previous method is inconvenient when the cdf F has a complicated expression and/or 

its inverse is difficult to find. We present next a method that uses the pdf f  instead. 

Theorem 2.4. Let 𝑓: ℝ → ℝ be a pdf. Let the vector (𝑋, 𝑌) be Uniformly distributed over 

the region 

𝐷 = {(𝑥, 𝑦) ∈ ℝ2|0 ≤ 𝑦 ≤ 𝑓(𝑥)} .                                (2.5) 

Then 𝑋 has pdf f, i.e. 𝑓𝑋 = 𝑓. 

Proof. First, let us determine the joint pdf of the vector (𝑋, 𝑌). By (1.16), it is 
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𝑓(𝑋,𝑌)(𝑥, 𝑦) =
1

𝑎𝑟𝑒𝑎(𝐷)
, for (𝑥, 𝑦) ∈ 𝐷 

and 0 everywhere else. But, since 𝑓 is a pdf, that area is∫ 𝑓(𝑥)𝑑𝑥 = 1
ℝ

. 

So, the joint pdf of (𝑋, 𝑌) is 

𝑓(𝑋,𝑌)(𝑥, 𝑦) = {
1, (𝑥, 𝑦) ∈ 𝐷

0, (𝑥, 𝑦) ∉ 𝐷.
 

Then, by (1.17), the (marginal) pdf of its first component is 

𝑓𝑋(𝑥) = ∫ 𝑓(𝑋,𝑌)(𝑥, 𝑦)𝑑𝑦 = ∫ 𝑑𝑦 = ∫ 𝑑𝑦 = 𝑓(𝑥).
𝑓(𝑥)

0𝐷ℝ
                   (2.6) 

Thus, 𝑋 indeed has the function 𝑓 as its pdf. □ 

To generate a variable with given pdf 𝑓, we generate points (𝑋, 𝑌) that are Uniformly 

distributed in 𝐷. 

Algorithm 2. 

1. Find numbers 𝑎, 𝑏 ∈ ℝ, 𝑐 ∈ ℝ+ such that 𝑓(𝑥) ∈ [0, 𝑐] for 𝑥 ∈ [𝑎, 𝑏] (this is 

always possible, since 𝐷 is a bounded in ℝ2, having an area of 1. The rectangle 
[𝑎, 𝑏] × [0, 𝑐] is called a bounding box. 

2. Generate 𝑈, 𝑉 ∈  𝒰(0,1). 

3. Let 𝑋 = 𝑎 + (𝑏 − 𝑎)𝑈 and 𝑌 = 𝑐𝑉. Then  𝑋 ∈  𝒰(a, b), 𝑌 ∈  𝒰(0, c) and 

(𝑋, 𝑌) ∈  𝒰([a, b] × [0, c]). 

4. If 𝑌 > 𝑓(𝑋), reject the point and return to step 2. If 𝑌 ≤ 𝑓(𝑋), then 𝑋 has the 

desired pdf, 𝑓. 

The idea of the rejection method is displayed graphically in Figure 1. 

 

Figure 1. Rejection Method 
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2.3. Special Methods  

These methods use specific properties of certain distributions. They are a good alternative 

of simulation, when the more general methods presented so far, are too complicated to 

implement. 

There is a large number of such methods, both for discrete (see e.g. [4]) and continuous 

random variables. We only present a few. 

Generation of a Poisson random variable, 𝑃(𝜆), 𝜆 >  0, whose pdf is given by (1.7). 

We use the fact that such a variable counts the number of “rare” events that occur during 

one unit of time and the fact that the time elapsed between any two such events has 

Exponential distribution, which can be generated by (2.4), using the inverse transform 

method. So, each such time is generated by 𝑇𝑖 = −
1

𝜆
ln (𝑈𝑖) , for 𝑈𝑖 ∈  𝒰(0,1) and then 

we count the number of events that occurred in one unit of time: 

𝑋 = max{𝑛 | 𝑇1 + ⋯ + 𝑇𝑛 ≤ 1} ,  i.e.  𝑋 = max{𝑛 | 𝑈1 ∙ … ∙ 𝑈𝑛 ≥ 𝑒−𝜆}.            (2.7) 

Algorithm 3. 

1. Generate 𝑈1, 𝑈2, … ∈  𝒰(0,1) 

2. Let 𝑋 = max{𝑛 | 𝑈1 ∙ 𝑈2 ∙ … ∙ 𝑈𝑛 ≥ 𝑒−𝜆}. 

Generation of a Normal random variable, 𝑁(𝜇, 𝜎), 𝜇 ∈ ℝ, 𝜎 > 0, whose pdf is given 

by (1.10). We present an algorithm for generating Normal Variables that uses two-

dimensional vectors, but omit the details, as they are too technical. 

Box-Muller transform  

Algorithm 4. 

1. Generate 𝑈, 𝑉 ∈  𝒰(0,1). 

2. Let 

{
𝑍1 = √−2ln (𝑈) cos(2𝜋𝑉) ,

𝑍2 = √−2ln (𝑈) sin(2𝜋𝑉).
 

Then 𝑍1, 𝑍2  are independent 𝑁(0,1) random variables. 

3. Let 𝑋 = 𝜎𝑍 + 𝜇  (for either 𝑍 from above). Then 𝑋 ∈ 𝑁(𝜇, 𝜎). 

2.4.  Accuracy of a Monte Carlo Study 

Now, using the methods of simulation presented so far, we perform a Monte Carlo study, 

meaning that we put the chosen algorithm in a loop and simulate a “long run”, i.e. 

generate a number of such variables, 𝑋1, … , 𝑋𝑁. 

Recall from Statistics that when a parameter is approximated by an estimator (a function 

of sample variables) �̅�, a desired quality of that estimator is to be unbiased, i.e. that 
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𝐸(�̅�) = 𝜃,                                                                (2.8) 

so that, in the long run, we know its values will stabilize at the right point. We also want 

that its variance 𝑉(�̅�) be small, approaching 0, as the simple size 𝑁 → ∞. 

Estimating probabilities, means and variances 

We estimate probabilities by long run relative frequencies. For a random variable 𝑋, we 

generate variables  𝑋1, … , 𝑋𝑁 with the same distribution and approximate 𝑝 = 𝑃(𝑋 ∈ 𝐴) 

by 

�̅� =
number of  𝑋1 ,…, 𝑋𝑁 ∈ 𝐴

𝑁
 .                                                  (2.9) 

The mean value 𝐸(𝑋) = 𝜇, the variance 𝑉(𝑋) = 𝜎2 and the standard deviation 𝜎 =

√𝑉(𝑋) of a random variable 𝑋 estimated by 

�̅� =
𝑋1 + ⋯ + 𝑋𝑁

𝑁
 

𝑠2 =
1

𝑁−1
∑ (𝑋𝑖 − �̅�)2,   𝑠 = √𝑠2𝑁

𝑖=1 ,                    (2.10) 

respectively. Since the simulations are independent, the number at the numerator in (2.9) 

has Binomial  𝐵(𝑁, 𝑝) distribution and, hence, expected value 𝑁𝑝 and variance  𝑁𝑝(1 −
𝑝). Then, we have 

𝐸(�̅�) =
1

𝑁
𝑁𝑝 = 𝑝, 

                                                         𝑉(�̅�) =
1

𝑁2 𝑁𝑝(1 − 𝑝) =
𝑝(1−𝑝)

𝑁
                           (2.11) 

 

Thus, �̅�  is an unbiased estimator for 𝑝 and its standard deviation 𝜎(�̅�) =  √
𝑝(1−𝑝)

𝑁
 

decreases with 𝑁 at the rate of 1/√𝑁 . 

The same is true for the estimators in (2.10), but we omit the details. 

Accuracy of a Monte Carlo study 

When we conduct a Monte Carlo study, the question arises about its size. What would be 

a suitable size in order to get a certain accuracy? Given a tolerable error  𝜀 > 0 and a 

significance level (probability of error) 𝛼 ∈ (0,1), we want to determine the size 𝑁 so that 

                                                            𝑃(|�̅� − 𝑝| > 𝜀) ≤ 𝛼.                                         (2.12) 

By (1.15), for moderate values of 𝑝, we have that  
𝑁�̅�−𝐸(𝑁�̅�)

√𝑉(𝑁�̅�)
=

�̅�−𝑝

√
𝑝(1−𝑝)

𝑁

≈ 𝑁(0,1). Then 

𝑃(|�̅� − 𝑝| > 𝜀) = 𝑃 (
 |�̅�−𝑝|

√
𝑝(1−𝑝)

𝑁

>
𝜀

√
𝑝(1−𝑝)

𝑁

) = 2Φ (−
𝜀√𝑁

√𝑝(1−𝑝)
), 
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where Φ is Laplace’s function (the cdf of a 𝑁(0,1) variable) described in (1.11). 

Still, this contains the unknown value 𝑝. We can manage that using the fact that for any 

𝑝 ∈ (0,1), 𝑝(1 − 𝑝) ≤
1

4
  and, thus, Φ (−

𝜀√𝑁

√𝑝(1−𝑝)
) ≤ Φ(−2𝜀√𝑁) . Then to ensure (2.12), 

we take Φ(−2𝜀√𝑁) ≤ 𝛼/2, i.e. 

                                                            𝑁 ≥
1

4
(

 𝑧𝛼/2

𝜀
)

2
,                                                   (2.13) 

where 𝑧𝛼/2 is the quantile (inverse of the cdf  Φ) of order 𝛼/2 for the 𝑁(0,1) distribution. 

3. APPLICATIONS 

Let us start by implementing in Matlab some of the examples discussed earlier. 

Example 3.1.  A Poisson variable 𝛲(𝜆), 𝜆 > 0, using Algorithm 3. 

The implementation of Algorithm 3, is given below 

lambda = input (’lambda ( > 0) = ’); % the parameter  

err = input (’error = ’ ); % maximum error 

alpha = input (’alpha (level of significance) = ’);  

N =  ceil (0.25*(norminv (alpha/2,0,1)/err) ^2); % MC size 

for j = 1 : N 

 U = rand; % generated U(0,1) variable 

 X(j)  = 0;  % initial value 

 while U >= exp (- lambda) 

  U = U * rand; % go further to n + 1 (i.e. X + 1) 

  X(j) = X(j) + 1; % the Poisson variable 

 end 

end 

clf % Compare it to the Poisson distribution, graphically. 

k = 0 : 25; % values for the Poisson distr. 

p_k = poisspdf (k, lambda); % probabilities of a Poiss distr. 

UX = unique (x); % the values of X listed ONLY ONCE 

n_X = hist (X,length(UX)); % the freq. of each value in UX 

plot(UX,n_X/N,’’,k,p_k, ’ro’,’Markersize’,7,‘LineWidth’,2) 
legend (’simulation’, ’Poisson distr’,0) 

A graphical comparison of the pdf’s is shown in Figure 2., for 𝜆 = 5, 𝜀 = 1𝑒 − 3 and 𝛼 =
0.05. 
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Figure 2. Poisson distribution 

Example 3.2. An Exponential variable 𝐸𝑥𝑝(𝜆), 𝜆 > 0, using the inverse transform 

method. 

An implementation of the algorithm in Example 2.3 is given below. 

lambda = input(’lambda ( > 0) = ’); % the parameter  

err = input (’error ( < lambda) = ’);% maximum error 

alpha = input (’alpha (level of significance) = ’);  

N = ceil(0.25*(norminv(alpha/2,0,1)/err)^2); % MC size 

for j = 1 : N 

 X(j) = -1/lambda*log(rand); % the Exp variables 

end 

clf 

% Compare it to the Exp(1/lambda) distr. (from Matlab), graphically. 

x = -0.1 : 0.01 : 1/lambda* log(lambda/err); 

cdfx = expcdf (x, 1/lambda); % the cdf of an Exp distr. 

for i = 1: length(x) 

 mycdf(i) = mean(X < x(i)); % cdf of the simulation 

end 

plot (x,cdfx, x, mycdf, ’r: ’, ’LineWidth’, 2) 

legend(’cdf of Exp distr’, ’cdf of simulation’,0) 

 

A graphical comparison of the cdf’s is shown in Figure 3., for 𝜆 = 4, 𝜀 = 1𝑒 − 3 and 

𝛼 = 0.05. 
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Figure 3. Exponential distribution, inverse transform method 

Example 3.3. Aplication: Forecasting for new software release 

An IT company is testing a new software to be released. Every day, software engineers 

find a random number of errors and correct them. On each day t, the number of errors 

found, 𝑋𝑡, has a Poisson (𝜆𝑡) distribution, where the parameter 𝜆𝑡 is the lowest number 

of errors found during the previous 𝑘 days, 

𝜆𝑡 = min {𝑋𝑡−1, 𝑋𝑡−2, … , 𝑋𝑡−𝑘}. 

If some errors are still undetected after  𝑡𝑚𝑎𝑥 days (i.e. if not all errors are found in 

𝑡𝑚𝑎𝑥 days), the software is withdrawn and goes back to development. Generate a Monte 

Carlo study to estimate 

a) the time it will take to find all errors; 

b) the total number of errors found in this new release; 

c) the probability that the software will be sent back to development. 

This problem does not have a simple analytic solution, therefore we use Monte Carlo 

methods to solve it. Below is the algorithm that gives the desired estimates. 

% Forecasting errors in new software release. 

err = input (’error = ’); % maximum error 

alpha = input(’alpha (level of significance) = ’); % level of sign. 

N = ceil(0.25*(norminv(alpha/2,0,1)/err)^2); % MC size 

fprintf(’Nr. of simulations N = %d \n’, N)  

k = input(’number of previous days considered = ’); 

inlastk = input(’numbers of errors in the last k days ... 

 (vector of length k) = ’); % initial. nr of errors  

tmax = input (’max time (in days) = ’); 

% Ttotal is the time it takes to find all the errors (in days) 

% Ntotalerr is the total number of errors that are detected 

for j = 1 : N; 

% T is time from now (in days), X is nr. of errors on day T 

% nrerr is the number of errors detected so far 

T = 0; 

X = inlastk (k); 



JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT 

 
447 

 

nrerr = sum(inlastk); 

lastk = inlastk; % number of errors in the last k days 

i=0; 

while X>0; % while loop until no errors are found 

 lambda = min(last); % par. for var X, Poisson 

% Simulate the nr of errors on day T, Poisson (lambda) U = rand; % 

generated U(0,1) variable 

X = 0; % initial value 

while U >= exp(- lambda); 

 U = U * rand; 

 X = X +1; % the Poisson variable 

end; 

T = T +1; % next day 

nrerr = nrerr + X; % new nr. of errors 

last = [last(2:k), X]; % new nrs of errors last k 

end; 

% the while loop ends when X = 0 on day T, that means that all errors 

were found on previous day, T – 1 

Ttotal (j) = T – 1; % the day all errors were found 

 Ntotalerr(j) = nrerr; 

end 

disp([mean(Ttotal), mean (Ntotalerr), mean (Ttotal > tmax)]) 

Several runs of this algorithm for 𝜀 = 5𝑒 − 3, 𝛼 = 0.01, 𝑘 = 4, [𝑋𝑡−1, 𝑋𝑡−2,  𝑋𝑡−3,
𝑋𝑡−4 ] = [10, 5, 7, 6] and 𝑡𝑚𝑎𝑥 = 10, give the time to find all errors approximately 7 

days, the total number of errors around 53 and the probability that the software will be 

sent back to development about 0.18. 
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